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Unsteady Compressible Flow Solver 

 

Introduction  
 

Analysis of unsteady compressible flow problems invariably involves the resolution of shock 

waves internal to the computational domain. Generally, this kind problems are difficult for 

internal to the computational domain.  Generally, these types of problems are difficult for 

interaction between shock waves, expansion waves and contact discontinuities as well as 

interaction between walls and all waves. Recently, the development of high-resolution 

numerical schemes, TVD schemes (Total Variation Diminishing methodology), has been a 

significant milestone for approaching the unsteady compressible flow.  These schemes have 

been widely used in different numerical simulations, and are time accurate. 

 

 

Governing Equations 
 

Hypothesis about the bulk viscosity will be used. This assumption implies that the 

thermodynamic pressure p is equal to one-third of the invariant sum of normal stresses.  The 

governing equations for gas flow are as follows: 

 
Mass conservation: 
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Momentum conservation:  
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Static enthalpy conservation: 
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where,  is viscous energy dissipation term and defined as  
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Equation of state: 
 

p = RT  
 
Where, p  is the ensemble averaged density of the mixture; U i  is the ith component of the 

density – weighted mean velocity. In the three dimensional space, U i  has three components, 

U i  = (U 1 , U 2 , U 3  ),. p  is mean  pressure; and   is the laminar viscosity. 

 
 
Numerical Procedure 
 

The method used in this study is the Pressure Implicit with Splitting Operator (PISO) algorithm 

first developed by Issa[1,2].  Due to the non-iterative procedure in the PISO algorithm, it has 

been shown to be more efficient than iterative methods, such as SIMPLE and SIMPLES.  The 

main feature of the PISO method is to split the solution process into a series of predictor and 

corrector steps whereby operations on pressure are decoupled from those on velocity at each 

time step.  The set of equations can then  be solved sequentially.  At each time step, the 

accuracy of the numerical solution is proportional to the time step size. The Charkravarthy-

Osher TVD scheme[3] is used to estimate the convective flux.  The control volume method 

was used to discretize the difference equations with variables located at each cell’s center. 

The grid system is shown in the following figure. 
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The implicit finite difference forms of the governing equations are: 
 
Continuity equation: 
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Momentum equation: 
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Energy equation: 
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In the above equations, the operators H, G denote the finite difference representations of the 

convective and diffusive fluxes of velocity U i , static enthalpy h, respectively.  The operator i I 

represents the first order Euler finite difference equivalent of ix / .  The source terms, S
iU , 

S h , contain all other terms which cannot be included in the convective and diffusive terms for 

each variable. 

 
The simplest way to ensure that the solution procedure of the finite difference equations is 

stable without losing accuracy, is to separate the diagonal elements of the operators and to 

shift them to the left-hand side of the equations.  Focusing on the momentum equation: 

 
H(U i ) = H ' (U i ) -A ipU  

 
where, H '  is the operator of convection and diffusion term at neighbor points surrounding the 

main point P and A p  is the coefficient of the diagonal element of the operator H.  Thus, a 

general implicit discretized equation can be written as: 
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The detailed formula of A p  and F ' are: 
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where, A m  is link coefficient.  The time term of transportation equation is discretized as: 
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Thus, all difference equations become 
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For momentum equations, we will split the finite difference equation into several steps. 
 

Predictor Step 
 

The momentum equation is solved implicitly in the predictor step. Let superscript n denote 

previous time step.  The predictor step of the momentum equation is: 
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In solving this equation, the new velocity *

iU  will be obtained.  However, *
iU  does not satisfy 

the continuity equation in general since the pressure values are not correct at this step. 

Therefore it is necessary to construct corrector steps so that the velocity satisfies the mass 

conservation. 

 

First Corrector Step 
 

After obtaining *
iU , the temperature *T  is calculated from static enthalpy: 
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The intermediate density nT  on np  and *T  is defined as, 
 

*RT

p n
nT   

 
If we can obtain the correct values of the pressure *p , it is possible to solve the momentum 

equation to obtain the new velocity **
iU I satisfying the continuity equation. Then the difference 

equation form of the momentum equation will be  
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It should be mentioned that H’ is kept unchanged at the first corrector step. The continuity 

equation will take the form: 
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where,  
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The values of *  and **

iU I are unknown, as we do not know *p .  The equation (3.12) is then 

approximated as: 
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The first term can be split into,  
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Subtracting the predictor step momentum equation from the difference form of the momentum 
equation, we get  
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Defining uD  as 
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The equation becomes 
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Substituting equations, the first pressure correction equation is obtained: 
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Solving this equation for the pressure *p , the new density * , and **

iU  can be obtained. 

Following this, the energy equation is solved implicitly, with unsteady pressure term expressed 

as  
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to obtain the new static enthalpy *h .  The new temperature **T  can be easily obtained from 

the relation between temperature are enthalpy. 

 

Second Corrector Step 
 

Since the effects of velocities at the neighboring points are neglected at the first corrector step, 

they must be accounted for at the second corrector step. Another intermediate density T*  is 

defined as  
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Let **p , **p I and  ** be the newest pressure, velocity and density respectively which must be 

solved for at this step.  The momentum equation, now, is  
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Subtracting the difference equation form of the momentum equation, we get  
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Using the notation for Du, we have  
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The continuity equation takes the approximated form 
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where,  
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Substituting equations, and splitting the first term of the continuity equation as 
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The correction equation for the newest pressure **p  becomes: 
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Solving the equation above to obtain the newest pressure **p , the newest velocity ***

iU  can be 

obtained.  After this correction step, ***
iU  satisfies mass conservation.  From the work of [l], it 

can be proved that the errors introduced by the operator-splitting procedure is less than the 

truncation errors of the finite difference scheme used in the governing equations.   
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The resulting velocity and pressure were assigned to the new time level: 
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The relationship between total enthalpy and temperature is, now 
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